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The observation of large-amplitude ‘kink’ waves on the vortex cores produced by 
an oscillating grid in a rotating fluid (Hopfinger, Browand & Gagne 1982) has 
motivated the study of such waves under more controlled circumstances. We have 
experimentally observed the properties of helical waves, rotating, plane standing 
waves and evolving, isolated kink-waves. Their characteristics have been related to 
theories based on the localized induction equation of Arms & Hama (19654, the ‘ cut-off ’ 
theory of Crow (1970) as extended by Moore & Saffman (1972), and an extension of 
Pocklington’s (1895) dispersion relationship for ‘ hollow-core ’ vortices. It is shown 
that the latter dispersion relation and the Moore & Saffman theory are good 
approximations to our experimental results. Using these, we present new results on 
solitary kink-wave properties of concentrated vortex flows, and in particular show 
that envelope solitons are possible only for a restricted range of carrier wavenumbers. 
A second class of waves was also observed: the axisymmetric solitary waves of 
Benjamin (1967). These were found to become unstable to spiral disturbances when 
their amplitude exceeded a certain magnitude, as has been found in the study of the 
related vortex-breakdown phenomenon. All of these observations are used to 
interpret the experiments presented by HBG and to discuss qualitatively the 
dynamics of rotating turbulence. In the Appendix we propose a possible mechanism 
by which concentrated vortices can be formed in a rotating turbulent fluid. 

1. Introduction 
In a recently published paper Hopfinger, Browand & Gagne (1982, hereinafter 

referred to as HBG) generated a turbulent flow field in a cylindrical tank, rotating 
about a vertical axis with angular velocity Q, by oscillating a grid of square bars at 
fixed frequency and excursion. Over a wide parameter range more-or-less equally 
spaced intense vortices, approximately aligned with the rotation axis, were formed 
and a variety of wave motions were then observed upon them. HBG concentrated 
almost exclusively on kinked solitary waves, and speculated on their importance in 
the overall dynamics of the system and in particular that they could be responsible 
for vortex intensification and vortex disruption. These conjectures and a broad 
interest in vortex motion and vortex breakdown phenomena motivated us to study 
travelling waves, in particular torsional waves, on isolated vortex cores. 

The study of wave motions on vortex cores is a venerable one and, for many years, 
t Permanent address : Departments of Mechanical and Aerospace Engineering, University of 

Southern California, Los Angeles, CA 90039-1453, U.S.A. 
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relatively simple solutions for the helicoidal wave (Pocklington 1895; Levy & 
Forsdyke 1928) and plane sinusoidal wave (Thomson 1880) have been known. Only 
in the past few years has it been recognized that vortex flows are one class of fluid 
motion which can support axisymmetric solitary waves of depression or expansion, 
depending on the flow configuration (Benjamin 1967 (a)  ; Pritchard 1970; Leibovich 
1970; among others), although it had been realized earlier that long waves, a useful 
ingredient for solitary wave description, were possible (Squire 1962). More recently 
a different class of solitary-wave solution was described (Hasimoto 1972; Kida 1981) 
in which the waves are non-axisymmetric kinks and are described by the solution 
to the nonlinear Schrodinger equation, at  least in the localized-induction-equation 
(LIE) approximation with constant Lla, where L is an ‘induction’ length along the 
vortex and a a measure of the core radius (see Batchelor 1967 ; Arms & Hams 1965; 
Betchov 1965). In this case, envelope solitons of constant torsion are possible 
solutions, a shape shared by the waves which arise in a large number of physical 
systems, e.g. deep-water surface waves (Yuen & Lake 1975). Moore & Saffman (1972), 
who modified Crow’s (1970) ‘cut-off’ theory, showed that the dispersion relationship 
for a train of helical waves depends, in fact, on the vortex structure and also by 
inference that the induction length L of the LIE depends on the wavenumber. This 
important conclusion has also been demonstrated in a recent work by Leibovich & 
Ma (1983). Here we are able to extend the Moore-Saffman results to waves of all 
wavelengths by modifying a result due to Pocklington (1895), for hollow-core 
vortices, to include a wide range of core structures. It will be seen that the properties 
of solitary waves are profoundly affected by the use of dispersion relationships which 
take into account details of vortex structure instead of the simplest assumption of 
constant L/a used by Hasimoto (1972), a point we discuss in some detail. 

While some parts of this theoretical framework have already been subject to a 
certain amount of experimental scrutiny, in particular stationary axisymmetric 
waves on supercritical core flows, the so-called vortex-breakdown phenomenon 
(Harvey 1962; Sarpkaya 1971; Garg & Leibovich 1979; Escudier, Bornstein & 
Maxworthy 1982), others have not. Here it is part of our programme to look, mainly, 
at non-axisymmetric wave phenomena, to describe their properties and then use them 
to understand the results of HBG. 

In $2 we describe the apparatus. The measured undisturbed vortex structure for 
different suction rates is presented in $3. The results of the torsional wave motions 
(helicoidal, plane and kink wave) are described in $4, and discussed in the context 
of HBG and the Hasimoto (1972), Moore & Saffman (1972), Pocklington (1895) and 
Leibovich & Ma (1983) theories in $5. In $6 we present new theoretical results on 
the solitary-wave properties of the Pocklington dispersion relationship. In 5 7 we 
highlight some properties of axisymmetric travelling waves. Finally ($8), we discuss 
the application of these observations to the wave motions described in HBG and seen 
in new sequences taken from their photographic records. 

Although there now appears to be no direct relation between concentrated vortex 
formation in a turbulent system and the wave motions upon them, we think it  useful 
to discuss, in the Appendix, a possible mechanism by which we believe concentrated, 
cyclonic vortices are formed when a turbulent field is subjected to a rotational 
constraint. By this mechanism vortex concentration and consequent wave motions 
upon them are possible occurrences in a variety of real systems. 
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I?IMJRE 1. Apparatus. A suction tube within a rotating tank creates a convergence of vorticity 
towards the centreline and forms a concentrated vortex. This vortex can be disturbed by shaking 
the tube horizontally, by cutting the vortex with the thin-wire disturbance generator or by suddenly 
stopping the suction for a short time interval. The suction-tube diameter is 1.27 cm. 

2. Apparatus and experimental procedure 
The basic apparatus is identical to that used in HBG, except that the grid 

mechanism was replaced by a plastic plate and an apparatus to produce a single 
concentrated vortex was mounted within and around the tank (figure 1). The latter 
consisted of a central suction tube of 1.27 cm diameter connected to a pump, flowmeter 
and discharge pipe all mounted outside the tank on a framework sitting on the 
laboratory floor. The vortex was made visible either by injecting dye through a 
central hole in the bottom plate or by observing the trajectories of small neutrally 
buoyant particles circulating through the system. The latter were used to measure 
the axial and swirl velocity profiles within the vortex. After several initial trials, three 
flow conditions were chosen, all had the same clockwiset (positive) tank rotation rate 
52 = 1.51 rad/s with three different total flow rates 130, 180 and 230 l/h. 

The vortex was perturbed in three different ways. Initially, to produce isolated kink 
waves, a thin metal rod was swung horizontally so that it cut the vortex at either 
the top or the bottom (or both in some cases). This had the effect of both stopping 
the vertical flow in the cut section for an instant and also of bending the core. A 
second, cleaner, method of producing reproducible helicoidal or standing waves was 
to oscillate the suction tube by a crank mechanism. To produce the strongest 
disturbances, we should have oscillated the tube in a circular motion in the sense 

t Looking down on the rotating tank. 
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opposite to the basic vortex rotation. Since this was hard to do in the present case, 
the tube was oscillated in a plane, which produced acceptable though not optimal 
disturbances. Finally, axisymmetric waves could be produced by stopping the exit 
flow for a short time (typically 0.1 s) and allowing the initial perturbation to develop 
into a sequence of solitary waves. On restarting the flow the vortex immediately 
reformed by propagating a wave of contraction along the vortex core. 

3. The measured undisturbed flow field 
The undisturbed flow field of the vortex a t  the middle of the tank is shown in 

figure 2, in non-dimensional form, for the three cases considered. The vortex model 
to which we compare the measured velocity profiles is the Burgers vortex given by 

and 

- = 1.39[ 1 -exp ( - l.28r*2)]/r* 
V 

Vm 

~ = exp ( - 0 . 5 4 ~ * ~ )  
W 

Wm 

whcrc r* = r / ro  and W, the maximum axial velocity. The coefficients have been 
obtained from a least-square fit of the model to the case Q = 230 l/h with ro = 0.33 em 
corresponding to  the position where V = V,. This is also a good fit for the other two 
cases, except that  i t  underestimates somewhat the vorticity at large r .  This is seen 
from figure 3, showing the vorticity distribution for the three cases studied. The 
variance in the experimental points of the axial vorticity near the core centre is not 
surprising in view of the difficulty in measuring the velocity distribution in the vortex 
at small r / ro .  The azimuthal vorticity component calculated from the velocity field 
given by (1 b ) ,  which is a good representation of the axial velocity (figure 2), is also 
shown in figurc 3. Its  contribution is less than 10% of the core vorticity, and in all 
the following discussions we neglect this component of the vorticity.? The circulation 
obtained from the Burgers model, adjusted to  the experimental velocity data, is 
related to  the maximum velocity and ro by 

f = 1.39(2nrO Vm). (2) 

The vortices are relatively thick, with a radius to  the maximum velocity of 
approximately 0.33 em, a value which varied slightly with flow rate, but, as 
is seen from figure 2, this variation is negligible for practical purposes 
(0.31 em < r0 < 0.34 em). I n  a later series of qualitative tests, the core was made 
much thinner by inserting a porous plate on the bottom of the tank and withdrawing 
fluid from the bottom boundary layer. This greatly modified the boundary-layer 
eruption and vortex breakdown a t  the bottom of the tank and created a thinner initial 
core diameter as a bottom boundary condition on further core development 
(Maxworthy 1972). However, this scheme gave a rather unsteady core, owing to pore 
blockage and the small diameter of the porous plate, and was not used in the reported 
wave experiments. 

The vorticity distribution shown in figurc 3 indicates that  a considerable amount 
of vorticity lies outside any reasonably defined core radius (e.g. the radius ro a t  which 
V is a maximum). For many years theories to describe vortex motion assumed that 
the core was thin compared with some reference length (e.g. the wavelength of a 

t The radial component due to tapering of the vortex is very small. 
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FIGURE 2. Undisturbed swirl and axial velocity profiles for the three cases considered in this paper, 
Q = 1.51 s-l: V, A, flow rate Q = 130 I/h, V, N 58 cm s-l, W, N 25 cm s-l: 0, 0,  180 l/h, 
93 cm a?, 35 cm s-l: +, x ,238 l/h, 132 cm s-l, 58 cm s-l. -, calculated from (1 a, b), adjusted 
for the case Q = 230 l/h; the core radius ro = 0.33 cm. 

I I 1 

r/r0 

FIGURE 3. Axial and azimuthal components of vorticity plotted as functions of non-dimensional 
radius. The vorticity has been calculated from locally smoothed velocity profiles. Symbols 
refer to the same conditions as in figure 2. - , axial vorticity component calculated 
from r, f/ V, = 3.56 exp ( - 1.28r*%) ; --- , azimuthal vorticity component calculated from 
r,LJV,,, = 1.08r* exp ( -0.54r*2). Note that the radial component and the background rotation 
are negligible. 

typical disturbance) and that all of the vorticity was contained within it. A t  the heart 
of these approximations lies the 'localized-induction equation ' (LIE) most explicitly 
described by Arms & Hama (1965) (see Batchelor 1967, p. 509), in which the induced 
velocity at any point on the vortex centreline is due only to the vorticity in these 
elements within a short distance L, on either side of the point. The ratio of L to some 
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characteristic vortex-core radius u is to first-order approximation assumed to have 
some constant value, which as far as we know has only been estimated for a small 
number of examples: for vortex rings (with constant curvature), where it turns out 
to depend on a t  least the Reynolds number (i.e. effective vortex-core diameter) (Sallet 
& Widmeyer 1974), and for the one case of a kinked solitary wave by HBG. I n  the 
cases we consider in $4 we are able to estimate this quantity and show how it varies, 
not only with the vorticity distribution, but also with the curvature of the filaments 
produced in our experiments. Only recently have attempts been made to take account 
of the structure of the basic vorticity found in practice (Crow 1970; Moore & Saffman 
1972; Leibovich & Ma 1983), and we show in $5 how the results of Moore & Saffman 
and an extension of the Yocklington (1895) theory can explain our experiments very 
well. 

4. Properties of torsional waves 
4.1. Helical waves of constant amplitude 

The helical wave on a vortex filament was first discussed by Levy t Forsdyke (1928), 
who calculated both its steady motion and stability. Subsequently, the results have 
been rediscovered by Betchov (1965) and Kida (1981). To the degree of approximation 
appropriate to most of our results, for which the ratio of helix wavelength A to core 
displacement a is very large, the speed of propagation of the wave form, or wave crest, 
is given, in the LIE approximation, by 

L l-k L 
2 i l n - z - l n - ,  

4 n ( l + k a )  u 4x u 
r c = -  

so that the dispersion relationship becomes 

r k 2  L 
4K u 

w w-ln-, ( 4 )  

where w is the wave frequency, k = (2x/A) is the wavenumber and r i s  the circulation 
around the vortex core. We also note for future reference that the wave curvature 
is given to the same degree of approximation by 

(5) 
a 

K w 4x2 - = k2a. 
A2 

I n  figure 4 ( a )  we show a photograph of a helical vortex filament produced by 
oscillating the suction tube a t  a fixed frequency starting from rest just a short time 
before the picture was taken. The leading edge of the wavetrain is propagating into 
an undisturbed region followed by a more-or-less regularly oscillating core. Tracings 
of the vortex centre of a sequence of such waves a t  equal time intervals are shown 
in figure 5, where we have drawn the progress of each wave trough and crest. In  these 
cases with the undisturbed vortex rotating in the clockwise direction, when looking 
from above, the helix is right-handed and is rotating in a counterclockwise direction 
and the phase of the waves propagates downwards. We can then use the velocities 
represented by these lines, corrected for the effect of tank rotation, to calculate L / a  
in (3). To do this we have to decide on a value for r. Using the most obvious value, 
namely that a t  the value of radius where 1.' is a maximum, gave values for L/a  which 
were both a function of flow rate and a function of the curvature of the wave as 
measured by Kr,,. Good data collapse to a single curve was found by using the value 
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FIGURE 4. Photographs of (a) a helical vortex filament wave (the maximum and minimum wave 
amplitude are propagating downwards); (b) a standing wave. The wavelength is fixed while the 
pattern rotates without propagation of phase. The dark lines running down the tank next to the 
vortex filaments are dye supply tubes. 

FIGURE 5. Tracings of the vortex centreline of sequences of helical waves as a function of time 
showing the progress of each wave crest for the case Q = 180 I/h. Oscillation frequency of suction 
tube n = 1.6 rad s-l, giving A = 10.8 cm, a = 0.4 cm and C, = 17.2 cm s-l. The chain-dotted lines 
indicate lines of constant phase. Note that the rotation of the vortex filament indicated by G is 
opposite to the sense of the vorticity of the undisturbed vortex. 
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FIGURE 6. 4/u versus KT,, or k2ar, for all of the cases considered in this paper. 0 ,  *, 4 travelling 
helical waves; 0, 0 0, standing sinusoidal waves; A solitary kink waves. The point is from 
HBG. -, Moore C Saffman relation with F = -0.45. The chain-dotted line is the value of L/u 
given by Leibovich C Ma (1983) for the range 0.46 < KT,, < 1 and the double chain-dotted line is 
the modified Pocklington relationship. 

of r calculated a t  twice the radius of the maximum velocity. From figure 3 i t  is seen 
that a t  r / ro  = 2 the vorticity has dropped to about 5 Yo or less of its maximum value, 
so that the circulation a t  r/rO = 2 approximates the vortex circulation to  within 
experimental error. The resulting curve of L/u versus Kro  is shown in figure 6 with 
values for the experiments discussed in $5 also included, although they, being more 
accurate, were actually found first. The actual values of r used in calculating L/u 
shown in figure 6 were 330, 300 and 1 8 4 ~ m ~ s - l  for & =  230, 180 and 130l/h 
respectively. These values differ somewhat from those given by the Burgers model 
(2), which would give 299, 267 and 168 cm2 s-l respectively. The most striking 
observation is that  L / u  is a strong function of K r O ,  a result which is discussed in detail 
in $5 ,  with further implications presented in §$6 and 8. 

The other interesting result which ran be seen by reference to figure 5 is that more 
waves exist a t  the end of the sequence than were put in by the oscillation of the upper 
end of the filament. Since wave energy appears to propagate faster than the phase 
of the waves, the group velocity of this dispersive wavetrain must be greater than 
the phase speed - a point we discuss in detail in $5.  

4.2. Standing waves 
When the downward-propagating helical wave described above reflects from the 
bottom boundary, i t  is transformed into a left-handed screw also rotating counter- 
clockwise. The interaction of these two waves produces a plane standing wave (i.e. 
a wave with no torsion which does not propagate), also rotating counterclockwise. 
This is the classical wave motion described originally by Thomson (1880) and most 
readily available in Batchelor (1967, p. 51 1 ) .  



Wave motions on vortex cores 149 

The pattern rotates so that the points of maximum excursion from the centreline 
rotate with a velocity 

(6) 
a m  L upam = -I%- ln-, 
A 2  d 

where A is again the wavelength and a, the maximum radial excursion of the core 
centreline. 

However, this velocity also equals Zna, n, where n is the frequency of oscillation 
of the vortex in cycles/s. Equating these two results gives 

- L = e x p { T } ,  2A2n 
d 

(7) 

so that in this case the calculation of L/u is reduced to the measurement of the 
wavelength produced in response to an oscillation of known frequency. 

In figure 4 ( b ) ,  we show a photograph of such a standing wave for the conditions 
given in the caption. On figure 6 we have included the values of L/a calculated from 
(7) again versus Kro or k2a, ro, where K is the same as (5 )  for large A/a,. 

4.3. Isolated kink waves 

We have refrained from calling this subsection ‘solitary kink waves’ because i t  now 
appears that the waves we can produce most readily are not solitary waves in the 
classical sense (see $36 and 8) .  They are evolving during our observations, but they 
do seem to exhibit some of the features of solitary waves. We start our discussion 
with a description of the formation process. In the first method the suction tube was 
oscillated quickly through one cycle and the evolution of the resultant single kink 
followed photographically. In  the present apparatus, such waves were of such small 
amplitude, compared to the visible core size for example, that it  was impossible to 
obtain any useful information from them. Alternatively, and first chronologically, 
the core region at either the top or bottom could be disturbed by rapidly cutting 
through the core with a thin solid rod. This had effects which were different depending 
on the direction of propagation. 

When the core was cut near the top, the axial flow was cut off briefly, and this 
information was transmitted to the rest of the vortex by an axisymmetric solitary 
wave of expansion, which, depending on its amplitude, sometimes became unstable 
and produced growing spirals behind it. This axisymmetric wave had a high velocity 
and rapidly left the region of the original disturbance. A second perturbation was 
created by the motion of the rod and this consisted initially of a single kink under 
most circumstances (see figure 7). At the same time as this kink began to propagate, 
the axial flow was reestablished by a wave of contraction or convergence from the 
suction tube, which also had a much higher velocity than that of the kink. In 
figure 8(a)  we show the evolution of a typical kink of this type, The chain-dotted 
lines join identical points on the pattern in a frame of reference moving with the 
envelope or group velocity, while the dotted line joins the positions of a wave crest. 
Owing to the small differences in these speeds, the waves appear to enter the front of 
the envelope, travel slowly through it and leave from the rear. Alternatively the 
pattern appears to rotate slowly clockwise, that is, in the sense of the vortex flow. As 
in the case of the helical wave, new waves appear ahead of the old crests owing, as 
we will show, to the higher group velocity. This effect confused interpretation of the 
wave pattern at first, since if one was not careful in following the developing wave, 
the pattern appeared to rotate in the wrong direction. A close examination of the 
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FIQURE 7 .  Photograph of an isolated kink wave produced by cutting the core at the top. The 
unstable axisymmetric wave produced at the same time, by briefly stopping the axial flow when 
the rod moves through the vortex, is also visible. The view of the left-hand side is a 90" mirror 
image. The dark line seen in the mirror image next to the vortex filament is a dye supply tube. 

wave velocities showed that both the group and phase velocities decreased slightly as 
the wave propagated. This is clearly seen from the dotted line drawn through the 
wave crests in figure 8 (a) which indicates a decrease of the phase velocity by about 
10 yo during the time of observation. The wave pattern velocity has a lesser variation 
and since in addition the wave pattern envelope is less well defined, we have 
represented its displacement by a straight line in figure 8(a) .  This decrease in wave 
speeds can be explained by the slight increase in wavelength over the trajectory (see 
below). Furthermore, we will see from the discussion in $5 (see also figure 9) that for 
waves on a real vortex the phase velocity decreases relative to the group velocity 
when the wavenumber decreases. In figure 8 (b) we have indicated what happens when 
the wave interacts with the endwall. The wave goes through a phase advance as it 
does so and reappears as a left-handed kink. Similar head-on interactions between 
waves travelling in opposite directions are presented in Maxworthy, Mory & 
Hopfinger (1983), and show a similar phase advance which is characteristic of 
solitary-wave interactions. 

At  first we attempt to analyse our results using the only available and complete 
theory - that of Hasimoto (1972) as interpreted by HBG and extended below. In  this 
theory, in which, critically, L/a is assumed constant, the speed of the wave envelope, 
which is the group velocity, is given by 

where 7,, is the wave torsion, which for small a,/h is approximately equal to 2x/A, 
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FIGURE 8. Tracing of the vortex centreline of the time evolution of an isolated kink wave for the 
condition Q = 180 l/h. (a) Freely propagating kink-wave; the single chain-dotted line indicates the 
trajectory of the estimated centre of the wave pattern moving at Cg x 33 cm 0, while the dotted 
line joins the positions of a particular wave crest. Note that new kinks are being formed ahead of 
the basic pattern. (b) Reflection from a boundary. It is difficult to follow individual phases through 
the interaction, but it is clear that the reflected wave suffers & phase advance. 

where a,  is the maximum radial displacement of the core centreline and A the 
wavelength of the central kink so that 

r r~ 
C, x In L/cr = --k In -. 

2 R  u (9) 

However, the wave peaks move at a different speed, which can be calculated to 
the present degree of approximation as in (3) by noting that the rotation rate of the 
coils or vortex filament is given by (when ( ~ / 2 7 ~ ) ~  < 1) 

R 
wp x -4- A2 In L/u ,  
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FIGURE 9. Properties of the Pocklington (1895) (-) and Moore & Saffman (1972) (---) dispersion 
relationships plotted in universal coordinates. Note tha t  the maximum of group velocity aao?/ake 
is at I$ = 0.61 and the fact tha t  the Hasimoto (1972) limit Cg/Cp = 2 only occurs for waves of very 
long wavelength. Solitons obeying the nonlinear Schriidinger equation, with a single frequency 
carrier, can only exist in the interval 0 < 6 < 0.61. - - -, ratio of group velocity to phase velocity 
(Cg/Cp) obtained by Leibovich & Ma; 0, typical value of Cg/Cp from present experiments; 0,  Cg/Cp 
from HBG. 

as for the helical waves (the negative sign indicates rotation opposite to the vortex 

The maxima and minima then appear to  move a t  a speed C, = w,h/2~,  which 
flow). 

becomes r ~ r  L 
C,x-ln-=-kIn- ,  

2h u 4R u 

which is equal to half the group velocity and is the same as that for a train of waves 
(3). We note that the use of this relationship to  calculate L/c does not depend on 
our kink waves being solitary waves. We are, essentially, treating them as the 
individual waves of a longer wavetrain. The individual particles of the core do not 
translate, however, the effect being the same as observing the peaks of a solid screw 
thread as i t  is rotated but not translated. Thus, in a frame of reference moving with 
the wave envelope, the waves appear to enter the front of the packet and then 
propagate backwards, or alternatively appear to  rotate in a direction opposite to that 
given by induction arguments, at a rate 

In  this case the parameter used by HBG becomes 

which agrees in magnitude with their discussion, but is of opposite sign from that 
found here and in Hasimoto (1972). For any particular set of experiments, we measure 
A and the speed of the wave peaks, and then through the use of (11) calculate L/c. 
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FIGURE 10. Disturbance produced occasionally by the wire cutting through the vortex core near 
the suction tube. Conditions Q = 180 l/h. A vortex kink moves at C, x 30 cm s-l ahead of a train 
of decaying vortex waves with a lower velocity indicated by the constant phase lines. 

The points calculated in this way are also shown in figure 6 with the symbol A. 
Because of the difficulty in deciding the position and orientation of the wave at small 
amplitudes and long wavelengths, only waves with relatively large values of KT,, were 
used. In  these cases the maximum value of K was used to plot the points on figure 6, 
and h was multiplied by a small (1.05-1.01) experimentally determined correction 
factor to account for the fact that a,/h was typically of order 0.1-0.05 and K therefore 
somewhat smaller than the value given by (5). One can see in figure 6 that the results 
for the isolated kinks form a logical extension to the existing points for helical and 
standing waves. This is probably not so surprising, since the evolving kink wave can 
be thought of as a perturbed helical wave of slightly varying wavelength and 
amplitude. We also note, in passing, that the two competing effects that give the 
observed wave speed, that is K and Lla, combine in such a way that over the range 
considered in the experiments Cp was virtually constant at 27-30 cm/s for the case 
where Q = 180 l/h for example. 

We also note from figure 8 that the pattern appears to rotate slowly backwards 
at approximately 2.4 rad/s (referred to the rotating frame), or alternatively that the 
wave envelope had a velocity only slightly larger than that of the individual wave 
peaks, an effect that was generally true for all kink waves observed under the present 
experimental conditions. From our previous discussion, it is clear that this result does 
not agree with the predictions of Hasimoto’s theory, which requires a velocity 
difference of a factor of about two or a much larger apparent rotation rate than that 
measured. These observations are rationalized in $85, 6 and 8. 

Although the vortex response to the major distorsion created by the ‘cutting ’ rod 
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FIGURE 11. Wave shape sometimes produced by the wire disturbance generator at the bottom of 
the tank consisting of a train of waves of growing wavelength and almost-constant amplitude. 
Conditions Q = 200 l/h. The velocity of each wave crest is approximately constant. 

was often of the type shown in figure 8, sometimes a different perturbation was 
formed. This appeared to  consist of an isolated kink wave followed by a slowly 
decaying wavetrain of almost constant wavelength. I n  figure 10, we show a drawing 
of this configuration. 

When the core was cut at the bottom, a rather different sequence of events took 
place. Immediately some form of axisymmetric disturbance moved very quickly up 
the core. It was, in fact, of such a small amplitude and high velocity that it could 
not be resolved photographically. Trailing behind was a very distinctive waveform, 
which can best be described as a wiggle of growing wavelength and virtually constant 
amplitude. A drawing of the shape of the vortex axis is shown in figure 11. 
Unfortunately, two frames were usually obscured by the vertical dye-supply tube in 
each sequence observed. The velocity of each maximum is almost constant, except 
as the wavelength variation becomes extreme towards the end of the observations, 
this being the result of the competing effects of variable K and Llu, which combine 
in such a way to give an almost constant phase speed. 

5. Discussion of the experimental results 
The most important results of this study are presented in figure 6, where a t  first 

we show, in the context of the LIE, that L/(T is a strong function of wave curvature 
K ,  or alternatively the wavenumber k .  We have chosen to  present our results this way 
to show decisively the major error induced by assuming a constant value of Llu in 
the calculation of filament motion and a t  the same time show the relationship of our 
results to the dispersion relationship of Moore & Saffman (1972) and a modification 
of Pocklington’s ( 1895) expression for hollow-core vortices. 
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We motivate our final result as follows. Moore & Saffman (1972) give an asymptotic 
formula for helices of long wavelength : 

where 

r k 2  2 
4n kr, 1 w = -  l n - + F ,  

W(r)  is the distribution of axial velocity within the core and y = 0.5772 is Euler's 
constant. Letting k* = kr,, (14) becomes 

"*=-- 4xor; eF' 
r k* (16) - k*2 In -, 

where F' = F+ln2. 
Equation (16) is plotted on figure 9 using universal Coordinates w^ = w* e-2F' and 

I$ = k* e-F' so that all dispersion relationships for all values of F fall on a single curve. 
As far as we are aware, only one dispersion relationship has been calculated that 

is valid for all wavenumbers. This is due to Pocklington (1895), who found that for 
hollow-core vortices, i.e. W ( r )  = 0, and all the vorticity concentrated at a vortex sheet 
at r = ro, 

where KO and Kl are the modified Bessel functions. 

negative sign) is, in dimensionless form, 
The long-wavelength asymptotic form of (17) for the slow wave (taking the 

w * =  k*2 1n--0.5772 , (18) I :* 1 
which also agrees precisely with the Moore-Saffman result (14) and (16) when one 
evaluates (15) for the hollow-core vortex ( W ( r )  = r ( r )  = 0 for r < ro) .  

Therefore one can plot Pocklington's relationship on figure 9, again using our 
universal coordinates and substituting Fb = In 2 -0.5772, whence 

where in this case k = k*e-Fb. In figure 9 we can see that Moore-Saffman is a true 
asymptote to the Pocklington curve but that several important differences do exist. 
Of critical importance to the discussion of $6 is the fact that the change in sign of 
d2w/dk2, i.e. dC,/dk = 0, occurs at shorter wavelengths for the Pocklington curve 
than for Moore-Saffman and that neither C, nor C, become zero. 

For future reference the phase velocity becomes 

6 FLY 151 
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where C, = w / k  and C, = dw/dk are the dimensional phase and group velocity 
respectively and we choose the slow wave (negative sign in (20) and (21)) as the 
appropriate branch of the relationship. As a final step we suggest that, since the 
asymptotic form (16) is valid for all values of F ,  that one can modify the Pocklington 
formula to be valid for values of F close to  F; in the following way: 

which is the equivalent of (17) for values of F different from Fk. 
This has the correct asymptotic behaviour (16) as k*+O for all F ,  and will be a 

better approximation to  the true dispersion curve than (16) for moderately large 
values of k*, say up to k* = O(1). 

In  order to compare these results with our experimental values of Lla, we note 
that within the Moore-Saffman formulation Lla = eF/k*, or, upon noting that 
K r ,  x k2am r,, 

I n  our experiments um/ro z 1 ,  and so on figure 6 we have plotted (23) for a value 
of F = -0.45. This value gives a remarkably good fit to the experimental data over 
the range of the experiments, and only deviates noticeably at small values of K r , .  

Calculation of F based on the velocity profiles expressed by (1 a, b) gives a value of 
-0.43, where the effective core radius is taken as ro and r is the value of the 
circulation a t  r = 2r,. Further calculations based directly on the measured profiles 
give F = -0.46. 

I n  order to plot the Pocklington (1895) results on the same gTaph, we note that 
6 = kz In (Llcr) within the LIE approximation, so that L / u  = eGIk', where the value 
of d can either be calculated from (19) for a given wavenumber k using k = kr, e-F', 
or can be taken directly from figure 8. Equivalently, since L/cr also equals e("*Ik*', 
we can use (22) to calculate w* for a chosen value of k* = kr,. These values of LIB 
are plotted in figure 6. We note that over the range of the experiments (22) is 
also a good approximation t o  our experimental results for F = 1n2-0.45 and 
Fk = In 2 - 0.5772. 

We see from figure 9 that, for the range of L/a or k we observe in our experiments 
on isolated kink waves, C,/C, is greater than unity by a t  most 40 %, and approaches 
30% a t  the extreme values of K r ,  shown in figure 6. I n  the example of figure 8 the 
measured group velocity is approximately 20 yo higher than the phase speed, while 
use of figure 9 and a mean value of 3.4 for L/a over the wave trajectory gives a 
difference of about 35 %. 

We can now also explain the results found for the helical waves in a similar fashion. 
For example, in figure 5 we noted the appearance of extra helices ahead of the first 
phase front. Unfortunately we cannot estimate the group velocity directly from 
figures such as these, since the disturbance propagating ahead of the first phase front 
has a somewhat smaller value of k than the waves that follow, and hence a larger 
value of C,/C, than the main wavetrain. This we observe in figure 5, where the first 
minimum (or maximum) propagates ahead of the wave with a velocity some 40% 
larger than the phase speed, which is close to but not equal to  what we would expect 
from the values of K r ,  within the main wavetrain. 

Recently Leibovich & Ma (1983) also obtained kink-wave solutions for a vortex 
with a vorticity distribution of the type considered by Burgers (1948). Ultimately, 
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they determine a relationship between a quantity h, related to our KrO, and Llu. In  
our notation and for small core displacements, 

Kro X 2U,/r0 h. 

For typical values of a, and ro, in our experiments, values of K r o  correspond to values 
of h of order 10, in which case L/u is typically 1.2 according to Leibovich 6 Ma, and 
does not vary very much as ~r~ is varied. The comparison plotted on figure 6 for the 
range of Kro  that Leibovich & Ma (1983) determine is the one for which solitary waves 
can exist (see, however, IS), and this shows that their estimate may in fact asymptote 
to the experimental values. Their results also indicate that the grouping ~ri /2a ,  
would be more appropriate than our grouping Kro, but our experiments do not cover 
a large enough range of a, or ro to check this quantitatively. The phase speed 
calculated by Leibovich & Ma is always greater than the group velocity for values 
of ~r~ typical of our experiments. In  fact, if we use their values of phase speed for 
helical waves in order to calculate equivalent values of Llu, we obtain values which 
are at least one to two orders of magnitude larger than those found experimentally. 
The ratio of Cg/Cp, calculated from their figure 1 ,  in which they give Cg and the wave 
frequency w* as functions of a dimensionless wavenumber, is indicated in figure 8 
for comparison. Two interesting observations can be made: one is that in their case 
Cg/Cp+O as k + O ,  which is in direct contradiction with our results, which agree with 
Moore & Saffman and two is that the ratio of Cg/Cp is much less than unity and that 
a Hasimoto soliton, with which they ‘calibrate’ their solution, does not seem an 
appropriate possibility under these circumstances. 

The Leibovich & Ma theory, however, has in its favour that it establishes the 
existence of solitary kink waves for CJC, < 1 as observed by Hopfinger & Browand 
(1982 ; see also HBGt), whereas the Pocklington dispersion relation always gives 
CJC, > 1. The Moore & Saffman dispersion relation would indicate the existence of 
waves with CJC, < 1, but these would most likely not be solitary waves (see $6). 
From HBG we find Cg/Cp x 0.7 for L/u  - 4 or k - 0.3. The values o f f  and u (their E )  

in HBG are lower bounds, and the former can easily be greater by a factor of 2, 
giving L / u  - 2 and k* - 0.6. These bounds are shown in figure 9. The range of k* 
corresponds to the range of validity of Leibovich & Ma’s theory, but the value of Cg/Cp 
differs by an order of magnitude. 

6. Comments on the theory of solitary waves obeying the extended 
Pocklington dispersion relationship 

The possible existence of kink-wave solitons propagating along isolated vortex 
filaments in an otherwise irrotational fluid was first discussed by Hasimoto (1972). 
Starting with the FrenetrSeret formulae for a space curve, together with the LIE 
with constant L/u, for the self-induction of a line vortex, Hasimoto demonstrated 
that the filament distortion evolves according to the cubic-nonlinear Schrodinger 
(NLS) equation 

t HBG pointed out that the pattern rotation agreed in magnitude with Hasimoto’s theory, but 
not in the Benw of rotation (HBG, p. 526). 

6-2 
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The complex wave function $ is defined in terms of the filament curvature K and 
torsion T by the relation 

(25)  $(S, t )  = K exp{i j' r ds'] 

and s measures distance along the vortex core. The signs of the dispersive and 
nonlinear terms in (24) are consistent with those required for the equation to admit 
envelope or wave-packet solitons solutions. Hasimoto also showed that the NLS 
equation (24) and the transformation (25) represented an exact reduction of 
Betchov's (1965) intrinsic equation for vortex motion. The linear form of (24), 
linearized about an undisturbed state having K = T = 0, is consistent with the 
dispersion relation 

(26) w* = k*2 

for infinitesimal helicoidal waves on a vortex within the limitations of the LIE. For 
this dispersion relationship, envelope solitons are possible for all narrow-band, carrier 
wavenumbers. On the other hand, when the effects of motion within the finite core 
are considered and the LIE is not invoked, both Pocklington (1895) and Moore & 
Saffman (1972) derived more appropriate relationships for helical oscillations of a 
vortex core, written in normalized form in (19) and (16). The appearance of the 
modified Bessel functions in (19) and logarithmic term in (16) has important 
implications for the form of the evolution equation for $ and therefore the existence 
of vortex solitons. In both cases the second term in (24) is greatly modified, and 
assuming that the form of the nonlinear term is the same as in (24), at least to leading 
order, the resulting modified NLS equations have no known permanent-wave 
solutions. 

If, on the other hand, the Pocklington dispersion relationship (19) is represented 
locally by a parabolic approximation, the evolution of a narrow-band wave packet 
is still described in terms of the NLS equation (24) with suitably modified coefficients. 
In this case, however, it is clear from figure 9, where the properties of (19) are 
sketched, that the curvature of the dispersion curve, which is the coefficient of a$/asz 
in (24), reverses sign for wavenumbers & above or below 0.61. When & > 0.61 and 
the curvature is negative, the signs of both the dispersive and nonlinear terms in (24) 
are positive, and no permanent-yave groups can exist on an otherwise straight 
filament. On the other hand, for k < 0.61 the curvature is positive and these terms 
can balance to produce soliton solutions. 

We note that all of our experiments were performed within this latter region and 
that vortex solitons were a possibility. However, we see that in figure 8, and all other 
similar cases, no steady-state solitary waves were ever observed. Two explanations 
are possible : The simpler is that the waves were still evolving towards a soliton state 
during our observations and that a much larger tank would be needed to observe 
them. Secondly, i t  is well known that NLS solitons are only possible if the nonlinear 
term exceeds a certain magnitude. For the Hasimoto soliton it is required that the 
maximum wave amplitude exceed l /n times the carrier wavelength. This is certainly 
not true of any of our waves although the magnitude of the dispersion term is smaller 
within our range and hence the required nonlinearity for soliton formation is likely 
to be smaller also. A complete study of the type performed by Leibovich & Ma would 
be necessary to clarify these questions. 
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7. Axisymmetric waves 
As we have already described, axisymmetric waves were the first formed by the 

motion of our kink-wave generator. Figure 7 shows a typical example of an 
axisymmetric wave propagating ahead of, and away from, a kink wave. Axisymmetric 
waves become unstable at relatively small amplitudes and cause vortex breakdown 
as the perturbations grow. Because most uncontrolled perturbations imposed on a 
vortex will generate axisymmetric waves in addition to torsional waves, we believe 
that these waves were present also in the turbulent system of HBG, and in fact this 
form of vortex breakdown was responsible for most of the observed small-scale 
turbulent events. The axisymmetric waves were probably overlooked by HBG 
because of the small amplitude required for instability to occur. 

Vortex breakdown has many technical applications (e.g. Lambourne & Byer 1961) 
and has therefore been extensively studied as a stationary wave phenomenon related 
to a change in flow conditions. The most complete theoretical description we know 
of is due to Benjamin (1962, 1967(a)) which has considerable experimental support 
in the work of Escudier, Bornstein & Zehnder (1980), Escudier, Bornstein & 
Maxworthy (1982), among others. Essentially, the view is that a weak vortex 
breakdown consists of a standing train of finite-amplitude waves each of which closely 
approximates a ‘sech2’ solitary wave solution. When the leading wave reaches a 
certain critical amplitude, the wake-like flow field created in its interior becomes 
unstable to spiral disturbances of negative wavenumber (see figure 12), a point of view 
espoused by Escudier et al. (1982) based on the work of Lessen, Singh & Paillet (1972). 
In any experiment, these invariably grow to become unstable, finite-amplitude spirals 
of small pitch rotating in a direction opposite to that of the basic rotation. In  the 
sense of the wave experiments of $4, the wave pattern achieves a pitch that allows 
it to move at a velocity equal to the wave speed of the axisymmetric solitary wave. 
Often this disturbance grows so rapidly that it completely dominates the flow 
visualization of the phenomena, so that usually any sense of an axisymmetric wave 
is lost, although it still exists in the mean flow, of course, and is central to a complete 
understanding of the whole phenomenon. 

Clearly, by a simple Galilean transformation, these standing waves on a supercritical 
axial velocity can be replaced by considering travelling waves on a subcritical flow 
as studied theoretically and experimentally by Pritchard (1970) and demonstrated 
earlier in the experiments of Granger (1968). In  the latter, the axial outlet of a vortex 
flow similar to ours was suddenly completely closed and this information transmitted 
to the core via an unstable, axisymmetric, travelling vortex breakdown. By judicious 
adjustment of this closing process, we have found that it is possible to form the whole 
range of vortex breakdown types from a weak solitary wave to a violent breakdown 
of the type described by Granger (1968). As already mentioned above, anything one 
does to a vortex core results in the formation of at  least one weak solitary wave. Here 
we are reminded of the exactly analogous situation in a stratified fluid (Benjamin 
1967(b), Davis & Acrivos 1967, Maxworthy 1980) where the first wave to leave a 
region of disturbed fluid was a symmetric internal gravity wave exactly analogous 
to the axisymmetric type on a vortex core (Pritchard 1970). 

A complete study of the stability of axisymmetric travelling waves is beyond the 
objectives of this paper. Recent calculations carried out in Maxworthy et al. (1983), 
based on Benjamin’s (19674 formulation, showed, however, that an axisymmetric 
wave with about a 20 % increase in vortex core radius gives rise already to an unstable 



T .  Maxworthy, E .  J .  Hopfinger and L. G.  Redekopp 160 

(4 

Rotating unstable 
spiral 

FIGURE 12. Sketch of axisymmetric vortex waves: (a) train of axisymmetric wave8 on a vortex core 
ordered by amplitude; ( b )  large-amplitude solitary wave which causes the flow behind it to become 
unstable to spiral disturbances, evolving often to turbulence. 

situation qualitatively in agreement with our observations. The calculations show 
furthermore that the effect of the axial velocity profile on the wave speed is 

C =  V m ~ 0 . 9 3 W m  

where the plus or minus sign depends on whether the wave travels with or against 
the axial flow in the vortex core. 

8. Discussion 

We have observed at least six different types of waves on a well-controlled vortex 
flow. Two of these, the helix and the standing wave, are regular in the sense that 
they have a well-defined wavelength and amplitude which do not vary appreciably 
along the length of the tank. These and the other types of kink wave, the isolated 
kink, the isolated kink plus trailing disturbance and the disturbance with increasing 
wavelength, have been observed to be extremely stable entities which do not cause 
disruption of the vortex core. Even when they interact quite violently, the core 
remains unbroken. When a kink wave is formed by disrupting the core, the latter 
reforms through the propagation of a wave of contraction from the suction tube, 
which reconcentrates the disrupted vortex lines. As the waves propagate they appear 
to have no effect upon the core flow -there is no dramatic thinning or vortex 
concentration, which would suggest that the kink waves could be important in the 
formation of the cores themselves. 

On the other hand, the axisymmetric waves, even at relatively small amplitude, 
do disrupt the core, creating tightly wound helices and turbulence; here again the 
cores are reformed by the propagation of a wave of contraction from the suction tube 
which reorganizes the vortex lines. These results are important in the interpretation 
of the wave motions observed in less-controlled circumstances, as we discuss in $8.2. 

8.1. Waves on ' controlled ' vortex Jlows 
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Upward- Downward- 
propagating, propagating, Upward- Downward- 
axisymmetric axisyrnrnetric propagating, propagating, 
and unstable and unstable kinks kinks 

Sequence 1 10 
(3 cores, 26 6 

duration) 

(2 cores, 36 a) 
Sequence 2 17 

Sequence 3 21 
(3 cores, 55 8 )  

3 

3 

I 

1 

4 

4 

0 

1 

0 

Totals 48 13 9 1 
Percentage 67 18.5 13 1.5 

TABLE 1. Frequency of occurrence of unstable axisymmetric 
waves in the turbulent system studied by HBG 

0.2. Waves in turbulent rotating Juids 
Here we reexamine the results of HBG, noting, among other things, the preponderance 
of unstable axisymmetric wavep, and add some extra observations to emphasize this 
point. 

The critical observation here is that any disturbance that tends to cut off or reduce 
the axial flow in the vortex core creates an axisymmetric type of solitary wave, which 
may or may not become unstable, depending on its amplitude. In  the experiments of 
HBG the axial flow in the cores was downward into the mixed region (see figure 13) ; 
at frequent intervals this axial flow was cut off completely by the turbulent 
motion in the mixed layer, and this information was transmitted along the core to 
the rest of the fluid by a wave of such large amplitude that it was invariably unstable. 
In the light of what we know now about unstable axisymmetric travelling waves, 
and vortex breakdown such a wave can be clearly seen in HBG (figures 16c and 12). 
If such a flow reduction is caused by disturbances above the mixed layer as by the 
very intense interaction of kink waves, then this too will produce unstable 
‘axisymmetric waves’ as in figures 16(a, b) of HBG. Owing to the asymmetry of this 
process, the most-unstable waves propagate against the axial flow, i.e. upwards, while 
the downward-propagating ones, which are usually not seem in the visualization, 
cause little disruption. The axial flow into the mixed layer is maintained, and this 
causes a wave of contraction upwards into the disturbed region, which reestablishes 
the axial flow. 

From the photographs in HBG, reexamination of their films and our own 
observations, reported here, it is clear that upward-propagating unstableaxisymmetric 
waves are of critical importance in the dynamics of the flow above the mixed layer. 
We note especially that they create regions of small-scale turbulence well above the 
mixed region, and hence must be responsible for a large part of the dissipation that 
occurs there. 

Finally, we have attempted to quantify these observations by noting over a certain 
time the number of each type of wave that crosses a given central cross-section of 
the tube for several sequences, consisting of different forcing frequencies and hence 
number of cores (table 1). 

Although the designations are somewhat subjective, by now we have had enough 
experience to be able to determine the wave types correctly in at  least 8 out of 10 
cases. We note the clear preference for unstable, upward-propagating waves and the 
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relative paucity of well-defined kink waves of small wavelength and long lifetime. 
Of course, the general wandering of the vortex cores and waves of a length comparable 
to the length of the tank might also be interpreted as kink waves, but we have not 
included them in the above classification since they do not contribute substantially 
to the dissipative processes in the quasi-two-dimensional turbulence regime well 
above the grid and are very difficult to observe unequivocally. 

This work was supported at the University of Grenoble by CNEXO contract 
83/2846 and USC by ONR contract N00014-82-K-0084. 
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F. K. Browand, P. Huerre and in particular M. Mory. The first version of this paper 
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The use of results from that paper greatly expanded the scope and possible 
importance of our work, and we are deeply indebted to Professor Moore for his 
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Appendix. The formation of concentrated vortices in rotating, 
turbulent flow 

The formation of concentrated vortices requires two major ingredients, a relatively 
weak ambient or background vorticity and some meridional flow that then convects 
the vorticity towards a suitable central location (Maxworthy 1981). Thereafter, the 
vorticity convection mechanism and diffusion by viscosity compete to produce a 
steady-state configuration. In some cases it has been observed that axisymmetric, 
inertial wave propagation is able to bring about the penetration of a localized 
convection mechanism into the main body of the rotating fluid (Gluck 1972), and 
vortex concentration or spin-up occurs rapidly. HGB’s observations of rapid vortex 
formation suggest that some similar mechanism is a t  work which we motivate as 
follows. In the present case, upon starting the grid oscillation, a front separating 
turbulent from nonturbulent fluid was created. Behind the front the turbulence was 
three-dimensional and describable by the non-rotating experiments of Hopfinger & 
Toly (1976) for example. This front propagated until a critical value of the local 
Rossby number based upon the magnitude of the local turbulent velocity fluctuations 
and integral scale was reached. Thereafter vortex generation occurred in a time 
corresponding to the travel time of inertial waves along the fluid column. In some 
less-extensive observations of the transient state, Dickinson & Long (1983) noted that 
when the critical value of the local Rossby number was reached the front broke down 
into a number of fluid columns, which penetrated upwards in the form of cones 
constituting the envelope of upward-propagating inertial waves, in a manner entirely 
equivalent to the formation of a Taylor column, in front of a body being moved along 
the axis of a rotating fluid (Maxworthy 1970). The upward dye-propagation velocity 
v was measured by these authors to be proportional to (KQ)?, where K = U, 1, (here 
uT and I ,  are the magnitudes of the velocity fluctuations and integral scales at  the 
plane of column formation, respectively). 

Dickinson & Long’s observations are analogous to observations of turbulent front 
propagation and generation of two-dimensional slug flows by grid oscillation in a 
stratified flow. Here in an entirely equivalent manner when a critical Richardson 
number was reached at the front it collapsed into a number of wedge-shaped regions 
or fingers, which penetrated the ambient fluid, generating internal waves as they did 



Wave motions on vortex cores 163 

Vortices 
/ 

‘Grid 

FIGURE 13. Formation of concentrated vortices by turbulence in a rotating fluid. The rising columns 
of mixed fluid, created by turbulence, collapse at a critical local Rossby number, causing a 
convergence of fluid, which concentrates vorticity and forms an intense vortex. 

so (Ivey & Corcos 1982; Browand & Hopfinger 1981, 1983; Thorpe 1982). A study 
of the geometry and flow fields in both cases reveals that a convergent flow field must 
be produced between the cones or wedges by the divergent flow they create. In 
particular, for the rotating-flow case, the most-intense effect will be felt at the centre 
of the triangle formed by three rising fluid columns. This process is shown 
diagrammatically in figure 13, where it can be seen that the tendency to vortex 
concentration should be greatest between the rising columns, but more critically that 
the amount of vortex concentration can far outweigh the amount of vortex 
compression and anticyclonic vortex formation caused by the rising columns. Thus 
eventually the cyclonic vortices dominate the flow, while the anticyclonic vorticity 
which is distributed throughout the fluid has a dominating effect only at the outer 
wall of the container, where cyclones are less likely to form. Clearly a similar 
intensification of the density gradient between the intrusions also occurs in the 
stratified-flow case, but its effect is not so dramatic in such a two-dimensional flow. 
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